Package de.lmu.ifi.dbs.elki.data

Examples of de.lmu.ifi.dbs.elki.data.SparseFloatVector$Parameterizer


    for(int d = selectedAttributes.nextSetBit(0); d >= 0; d = selectedAttributes.nextSetBit(d + 1)) {
      if(v.getValue(d + 1) != 0.0f) {
        values.put(d, v.getValue(d + 1));
      }
    }
    SparseFloatVector projectedVector = new SparseFloatVector(values, selectedAttributes.cardinality());
    return projectedVector;
  }
View Full Code Here


  }

  @Override
  protected SimpleTypeInformation<? super SparseFloatVector> convertedType(SimpleTypeInformation<SparseFloatVector> in) {
    final Map<Integer, Float> emptyMap = Collections.emptyMap();
    return new VectorFieldTypeInformation<SparseFloatVector>(SparseFloatVector.class, k, new SparseFloatVector(emptyMap, k));
  }
View Full Code Here

    for(int d = selectedAttributes.nextSetBit(0); d >= 0; d = selectedAttributes.nextSetBit(d + 1)) {
      if(v.getValue(d + 1) != 0.0f) {
        values.put(d, v.getValue(d + 1));
      }
    }
    SparseFloatVector projectedVector = new SparseFloatVector(values, selectedAttributes.cardinality());
    return projectedVector;
  }
View Full Code Here

    BitSet b = featureVector.getNotNullMask();
    TIntFloatHashMap vals = new TIntFloatHashMap();
    for(int i = b.nextSetBit(0); i >= 0; i = b.nextSetBit(i + 1)) {
      vals.put(i, (float) (featureVector.doubleValue(i) * idf.get(i)));
    }
    return new SparseFloatVector(vals, featureVector.getDimensionality());
  }
View Full Code Here

    BitSet b = featureVector.getNotNullMask();
    TIntFloatHashMap vals = new TIntFloatHashMap();
    for(int i = b.nextSetBit(0); i >= 0; i = b.nextSetBit(i + 1)) {
      vals.put(i, (float) (featureVector.doubleValue(i) / idf.get(i)));
    }
    return new SparseFloatVector(vals, featureVector.getDimensionality());
  }
View Full Code Here

    }
    TIntFloatHashMap vals = new TIntFloatHashMap();
    for(int i = b.nextSetBit(0); i >= 0; i = b.nextSetBit(i + 1)) {
      vals.put(i, (float) (featureVector.doubleValue(i) / sum * idf.get(i)));
    }
    return new SparseFloatVector(vals, featureVector.getDimensionality());
  }
View Full Code Here

    }
    if(curterm != null) {
      labels.add(curterm);
    }

    return new Pair<SparseFloatVector, LabelList>(new SparseFloatVector(values, maxdim), labels);
  }
View Full Code Here

  }

  @Override
  protected VectorFieldTypeInformation<SparseFloatVector> getTypeInformation(int dimensionality) {
    final Map<Integer, Float> emptyMap = Collections.emptyMap();
    return new VectorFieldTypeInformation<SparseFloatVector>(SparseFloatVector.class, dimensionality, new SparseFloatVector(emptyMap, dimensionality));
  }
View Full Code Here

    }
    Map<Integer, Float> vals = new HashMap<Integer, Float>();
    for(int i = b.nextSetBit(0); i >= 0; i = b.nextSetBit(i + 1)) {
      vals.put(i, (float) (featureVector.doubleValue(i) / sum * idf.get(i).doubleValue()));
    }
    return new SparseFloatVector(vals, featureVector.getDimensionality());
  }
View Full Code Here

  }

  @Override
  protected SimpleTypeInformation<? super SparseFloatVector> convertedType(SimpleTypeInformation<SparseFloatVector> in) {
    initializeRandomAttributes(in);
    return new VectorFieldTypeInformation<SparseFloatVector>(SparseFloatVector.class, k, new SparseFloatVector(SparseFloatVector.EMPTYMAP, k));
  }
View Full Code Here

TOP

Related Classes of de.lmu.ifi.dbs.elki.data.SparseFloatVector$Parameterizer

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.