EvaluationResult averagedModel = new EvaluationResult();
averagedModel.numLabels = numLabels;
final int m = features.length;
// compute the split ranges by blocks, so we have range from 0 to the next
// partition index end that will be our testset, and so on.
List<Range> partition = new ArrayList<>(new BlockPartitioner().partition(
numFolds, m).getBoundaries());
int[] splitRanges = new int[numFolds];
for (int i = 1; i < numFolds; i++) {
splitRanges[i] = partition.get(i).getEnd();
}