Package com.opengamma.analytics.math.interpolation

Examples of com.opengamma.analytics.math.interpolation.PiecewisePolynomialResultsWithSensitivity


        }
      }
      diffSense[i] = new DoubleMatrix2D(tmp);
    }

    PiecewisePolynomialResultsWithSensitivity ppDiff = new PiecewisePolynomialResultsWithSensitivity(pp.getKnots(), pp.getCoefMatrix(), nCoefs - 1, pp.getDimensions(), diffSense);
    return nodeSensitivity(ppDiff, xKeys);
  }
View Full Code Here


        }
      }
      diffSense[i] = new DoubleMatrix2D(tmp);
    }

    PiecewisePolynomialResultsWithSensitivity ppDiff = new PiecewisePolynomialResultsWithSensitivity(pp.getKnots(), pp.getCoefMatrix(), nCoefs - 2, pp.getDimensions(), diffSense);
    return nodeSensitivity(ppDiff, xKeys);
  }
View Full Code Here

      final double xMax = xValues[nData - 1];
      for (int i = 0; i < 10 * nData; ++i) {
        xKeys[i] = xMin + (xMax - xMin) / (10 * nData - 1) * i;
      }

      PiecewisePolynomialResultsWithSensitivity result = interps[k].interpolateWithSensitivity(xValues, yValues);
      for (int j = 0; j < nData; ++j) {
        yValuesUp[j] = yValues[j] * (1. + EPS);
        yValuesDw[j] = yValues[j] * (1. - EPS);
        final PiecewisePolynomialResultsWithSensitivity resultUp = interps[k].interpolateWithSensitivity(xValues, yValuesUp);
        final PiecewisePolynomialResultsWithSensitivity resultDw = interps[k].interpolateWithSensitivity(xValues, yValuesDw);

        final double[] valuesUp = FUNCTION.evaluate(resultUp, xKeys).getData()[0];
        final double[] valuesDw = FUNCTION.evaluate(resultDw, xKeys).getData()[0];
        final double[] diffUp = FUNCTION.differentiate(resultUp, xKeys).getData()[0];
        final double[] diffDw = FUNCTION.differentiate(resultDw, xKeys).getData()[0];
View Full Code Here

      final double xMax = xValues[nData - 1];
      for (int i = 0; i < 10 * nData; ++i) {
        xKeys[i] = xMin + (xMax - xMin) / (10 * nData - 1) * i;
      }

      PiecewisePolynomialResultsWithSensitivity result = interps[k].interpolateWithSensitivity(xValues, yValues);
      for (int j = 0; j < nData; ++j) {
        yValuesUp[j] = yValues[j] * (1. + EPS);
        yValuesDw[j] = yValues[j] * (1. - EPS);
        final PiecewisePolynomialResultsWithSensitivity resultUp = interps[k].interpolateWithSensitivity(xValues, yValuesUp);
        final PiecewisePolynomialResultsWithSensitivity resultDw = interps[k].interpolateWithSensitivity(xValues, yValuesDw);

        final double[] diffUp = FUNCTION.differentiateTwice(resultUp, xKeys).getData()[0];
        final double[] diffDw = FUNCTION.differentiateTwice(resultDw, xKeys).getData()[0];
        for (int i = 0; i < 10 * nData; ++i) {
          final double xKeyUp = xKeys[i] * (1. + EPS);
View Full Code Here

          final double xMax = xValues[nData - 1];
          for (int i = 0; i < 10 * nData; ++i) {
            xKeys[i] = xMin + (xMax - xMin) / (10 * nData - 1) * i;
          }

          PiecewisePolynomialResultsWithSensitivity result = interps[k].interpolateWithSensitivity(xValues, yValues);
          for (int j = 0; j < nData; ++j) {
            yValuesUp[j + 1] = yValues[j + 1] * (1. + EPS);
            yValuesDw[j + 1] = yValues[j + 1] * (1. - EPS);
            final PiecewisePolynomialResultsWithSensitivity resultUp = interps[k].interpolateWithSensitivity(xValues, yValuesUp);
            final PiecewisePolynomialResultsWithSensitivity resultDw = interps[k].interpolateWithSensitivity(xValues, yValuesDw);

            final double[] valuesUp = FUNCTION.evaluate(resultUp, xKeys).getData()[0];
            final double[] valuesDw = FUNCTION.evaluate(resultDw, xKeys).getData()[0];
            final double[] diffUp = FUNCTION.differentiate(resultUp, xKeys).getData()[0];
            final double[] diffDw = FUNCTION.differentiate(resultDw, xKeys).getData()[0];
View Full Code Here

          final double xMax = xValues[nData - 1];
          for (int i = 0; i < 10 * nData; ++i) {
            xKeys[i] = xMin + (xMax - xMin) / (10 * nData - 1) * i;
          }

          PiecewisePolynomialResultsWithSensitivity result = interps[k].interpolateWithSensitivity(xValues, yValues);
          for (int j = 0; j < nData; ++j) {
            yValuesUp[j + 1] = yValues[j + 1] * (1. + EPS);
            yValuesDw[j + 1] = yValues[j + 1] * (1. - EPS);
            final PiecewisePolynomialResultsWithSensitivity resultUp = interps[k].interpolateWithSensitivity(xValues, yValuesUp);
            final PiecewisePolynomialResultsWithSensitivity resultDw = interps[k].interpolateWithSensitivity(xValues, yValuesDw);

            final double[] diffUp = FUNCTION.differentiateTwice(resultUp, xKeys).getData()[0];
            final double[] diffDw = FUNCTION.differentiateTwice(resultDw, xKeys).getData()[0];
            for (int i = 0; i < 10 * nData; ++i) {
              final double xKeyUp = xKeys[i] * (1. + EPS);
View Full Code Here

TOP

Related Classes of com.opengamma.analytics.math.interpolation.PiecewisePolynomialResultsWithSensitivity

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.