Package com.github.neuralnetworks.training.backpropagation

Examples of com.github.neuralnetworks.training.backpropagation.BackpropagationMaxPooling2D


        } else if (ffcc instanceof AparapiSoftReLU) {
      result = new BackPropagationSoftReLU(p);
        } else if (ffcc instanceof AparapiReLU) {
      result = new BackPropagationReLU(p);
        } else if (ffcc instanceof AparapiMaxPooling2D || ffcc instanceof AparapiStochasticPooling2D) {
      result = new BackpropagationMaxPooling2D();
        } else if (ffcc instanceof AparapiAveragePooling2D) {
      result = new BackpropagationAveragePooling2D();
        } else if (ffcc instanceof ConnectionCalculatorConv) {
      Layer opposite = Util.getOppositeLayer(chunk.iterator().next(), current);
      if (!convCalculatedLayers.contains(opposite)) {
View Full Code Here


  vp = new ValuesProvider();
  vp.addValues(c.getOutputLayer(), o);
  vp.addValues(c.getInputLayer(), bpo);

  BackpropagationMaxPooling2D bp = new BackpropagationMaxPooling2D();
  bp.setActivations(activations);
  bp.calculate(connections, vp, c.getInputLayer());

  assertEquals(true, bpo.get(5, 0) == a1.get(5, 0));
  assertEquals(true, bpo.get(7, 0) == a1.get(7, 0));
  assertEquals(true, bpo.get(13, 0) == a1.get(13, 0));
  assertEquals(true, bpo.get(14, 0) == a1.get(14, 0));
View Full Code Here

  calc.calculate(connections, activations, c.getOutputLayer());

  ValuesProvider vp = TensorFactory.tensorProvider(c, 2, true);
  TensorFactory.copy(activations.get(c.getOutputLayer()), vp.get(c.getOutputLayer()));

  BackpropagationMaxPooling2D bp = new BackpropagationMaxPooling2D();
  bp.setActivations(activations);
  bp.calculate(connections, vp, c.getInputLayer());

  Tensor a = activations.get(c.getInputLayer());
  Tensor bpo = vp.get(c.getInputLayer());

  assertEquals(true, bpo.get(0, 1, 1, 0) == a.get(0, 1, 1, 0));
View Full Code Here

        } else if (ffcc instanceof AparapiReLU) {
      result = new BackPropagationReLU(p);
        } else if (ffcc instanceof AparapiMaxout) {
      result = new BackpropagationMaxout(p);
        } else if (ffcc instanceof AparapiMaxPooling2D || ffcc instanceof AparapiStochasticPooling2D) {
      result = new BackpropagationMaxPooling2D();
        } else if (ffcc instanceof AparapiAveragePooling2D) {
      result = new BackpropagationAveragePooling2D();
        } else if (ffcc instanceof ConnectionCalculatorConv) {
      Layer opposite = Util.getOppositeLayer(chunk.iterator().next(), current);
      if (!convCalculatedLayers.contains(opposite)) {
View Full Code Here

TOP

Related Classes of com.github.neuralnetworks.training.backpropagation.BackpropagationMaxPooling2D

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.