Package com.github.neuralnetworks.calculation.neuronfunctions

Examples of com.github.neuralnetworks.calculation.neuronfunctions.BernoulliDistribution


    public static AparapiCDTrainer cdSoftReLUTrainer(RBM rbm, TrainingInputProvider trainingSet, TrainingInputProvider testingSet, OutputError error, NNRandomInitializer rand, float learningRate, float momentum, float l1weightDecay, float l2weightDecay, int gibbsSampling, boolean isPersistentCD) {
  rbm.setLayerCalculator(NNFactory.rbmSoftReluSoftRelu(rbm));

  RBMLayerCalculator lc = NNFactory.rbmSigmoidSigmoid(rbm);
  ConnectionCalculatorFullyConnected cc = (ConnectionCalculatorFullyConnected) lc.getConnectionCalculator(rbm.getInputLayer());
  cc.addPreTransferFunction(new BernoulliDistribution());

  return new AparapiCDTrainer(rbmProperties(rbm, lc, trainingSet, testingSet, error, rand, learningRate, momentum, l1weightDecay, l2weightDecay, gibbsSampling, isPersistentCD));
    }
View Full Code Here


    public static AparapiCDTrainer cdSigmoidTrainer(RBM rbm, TrainingInputProvider trainingSet, TrainingInputProvider testingSet, OutputError error, NNRandomInitializer rand, float learningRate, float momentum, float l1weightDecay, float l2weightDecay, int gibbsSampling, boolean isPersistentCD) {
  rbm.setLayerCalculator(NNFactory.rbmSigmoidSigmoid(rbm));

  RBMLayerCalculator lc = NNFactory.rbmSigmoidSigmoid(rbm);
  ConnectionCalculatorFullyConnected cc = (ConnectionCalculatorFullyConnected) lc.getConnectionCalculator(rbm.getInputLayer());
  cc.addPreTransferFunction(new BernoulliDistribution());

  return new AparapiCDTrainer(rbmProperties(rbm, lc, trainingSet, testingSet, error, rand, learningRate, momentum, l1weightDecay, l2weightDecay, gibbsSampling, isPersistentCD));
    }
View Full Code Here

    public static AparapiCDTrainer cdSoftReLUTrainer(RBM rbm, TrainingInputProvider trainingSet, TrainingInputProvider testingSet, OutputError error, NNRandomInitializer rand, float learningRate, float momentum, float l1weightDecay, float l2weightDecay, int gibbsSampling, int trainingBatchSize, int epochs, boolean isPersistentCD) {
  rbm.setLayerCalculator(NNFactory.lcSoftRelu(rbm, null));

  RBMLayerCalculator lc = NNFactory.rbmSoftReluSoftRelu(rbm, trainingBatchSize);
  ConnectionCalculatorFullyConnected cc = (ConnectionCalculatorFullyConnected) lc.getNegPhaseHiddenToVisibleCC();
  cc.addPreTransferFunction(new BernoulliDistribution());

  return new AparapiCDTrainer(rbmProperties(rbm, lc, trainingSet, testingSet, error, rand, learningRate, momentum, l1weightDecay, l2weightDecay, gibbsSampling, trainingBatchSize, epochs, isPersistentCD));
    }
View Full Code Here

    public static AparapiCDTrainer cdSigmoidBinaryTrainer(RBM rbm, TrainingInputProvider trainingSet, TrainingInputProvider testingSet, OutputError error, NNRandomInitializer rand, float learningRate, float momentum, float l1weightDecay, float l2weightDecay, int gibbsSampling, int trainingBatchSize, int epochs, boolean isPersistentCD) {
  rbm.setLayerCalculator(NNFactory.lcSigmoid(rbm, null));

  RBMLayerCalculator lc = NNFactory.rbmSigmoidSigmoid(rbm, trainingBatchSize);
  ConnectionCalculatorFullyConnected cc = (ConnectionCalculatorFullyConnected) lc.getNegPhaseHiddenToVisibleCC();
  cc.addPreTransferFunction(new BernoulliDistribution());

  return new AparapiCDTrainer(rbmProperties(rbm, lc, trainingSet, testingSet, error, rand, learningRate, momentum, l1weightDecay, l2weightDecay, gibbsSampling, trainingBatchSize, epochs, isPersistentCD));
    }
View Full Code Here

TOP

Related Classes of com.github.neuralnetworks.calculation.neuronfunctions.BernoulliDistribution

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.