Package com.github.neuralnetworks.calculation.neuronfunctions

Examples of com.github.neuralnetworks.calculation.neuronfunctions.AparapiMaxPooling2D


  Subsampling2DConnection c = new Subsampling2DConnection(new Layer(), new Layer(), 4, 4, 2, 2, 2);
  Matrix i1 = new Matrix(new float[] { 0.5f, 1, 1, 2, 1.5f, 3, 2, 4, 2.5f, 5, 3, 6, 3.5f, 7, 4f, 8, 4.5f, 9, 5f, 10, 5.5f, 11, 6f, 12, 6.5f, 13, 7f, 14, 8f, 16, 7.5f, 15, 8.5f, 17, 9f, 18, 9.5f, 19, 10f, 20, 10.5f, 21, 11f, 22, 11.5f, 23, 12f, 24, 12.5f, 25, 13f, 26, 13.5f, 27, 14f, 28, 14.5f, 29, 15f, 30, 16f, 32, 15.5f, 31 }, 2);
  List<Connections> connections = new ArrayList<Connections>();
  connections.add(c);

  ConnectionCalculator calc = new AparapiMaxPooling2D();
  Matrix o = new Matrix(8, 2);

  ValuesProvider vp = new ValuesProvider();
  vp.addValues(c.getInputLayer(), i1);
  vp.addValues(c.getOutputLayer(), o);

  calc.calculate(connections, vp, c.getOutputLayer());

  assertEquals(3, o.get(0, 0), 0);
  assertEquals(4, o.get(1, 0), 0);
  assertEquals(7, o.get(2, 0), 0);
  assertEquals(8, o.get(3, 0), 0);
View Full Code Here


  // max pooling
  ValuesProvider vp = new ValuesProvider();
  vp.addValues(c.getInputLayer(), a1);
  vp.addValues(c.getOutputLayer(), o);

  ConnectionCalculator calc = new AparapiMaxPooling2D();
  calc.calculate(connections, vp, c.getOutputLayer());

  ValuesProvider activations = new ValuesProvider();
  activations.addValues(c.getInputLayer(), a1);

  Matrix bpo = new Matrix(32, 2);
View Full Code Here

    }

    public static void lcMaxPooling(NeuralNetworkImpl nn) {
  if (nn.getLayerCalculator() instanceof LayerCalculatorImpl) {
      LayerCalculatorImpl lc = (LayerCalculatorImpl) nn.getLayerCalculator();
      nn.getLayers().stream().filter(l -> Util.isSubsampling(l)).forEach(l -> lc.addConnectionCalculator(l, new AparapiMaxPooling2D()));
  } else {
      throw new IllegalArgumentException("LayerCalculator type not supported");
  }
    }
View Full Code Here

    public void testMaxPooling() {
  Subsampling2DConnection c = new Subsampling2DConnection(new Layer(), new Layer(), 4, 4, 2, 2, 2);
  List<Connections> connections = new ArrayList<Connections>();
  connections.add(c);

  ConnectionCalculator calc = new AparapiMaxPooling2D();

  ValuesProvider vp = TensorFactory.tensorProvider(c, 2, true);
  float[] src = new float[] { 0.5f, 1, 1, 2, 1.5f, 3, 2, 4, 2.5f, 5, 3, 6, 3.5f, 7, 4f, 8, 4.5f, 9, 5f, 10, 5.5f, 11, 6f, 12, 6.5f, 13, 7f, 14, 8f, 16, 7.5f, 15, 8.5f, 17, 9f, 18, 9.5f, 19, 10f, 20, 10.5f, 21, 11f, 22, 11.5f, 23, 12f, 24, 12.5f, 25, 13f, 26, 13.5f, 27, 14f, 28, 14.5f, 29, 15f, 30, 16f, 32, 15.5f, 31 };
  System.arraycopy(src, 0, vp.get(c.getInputLayer()).getElements(), vp.get(c.getInputLayer()).getStartIndex(), src.length);

  calc.calculate(connections, vp, c.getOutputLayer());

  Tensor o = vp.get(c.getOutputLayer());

  assertEquals(3, o.get(0, 0, 0, 0), 0);
  assertEquals(4, o.get(0, 0, 1, 0), 0);
View Full Code Here

  // max pooling
  ValuesProvider activations = TensorFactory.tensorProvider(c, 2, true);
  float[] src = new float[] { 0.5f, 1, 1, 2, 1.5f, 3, 2, 4, 2.5f, 5, 3, 6, 3.5f, 7, 4f, 8, 4.5f, 9, 5f, 10, 5.5f, 11, 6f, 12, 6.5f, 13, 7f, 14, 8f, 16, 7.5f, 15, 8.5f, 17, 9f, 18, 9.5f, 19, 10f, 20, 10.5f, 21, 11f, 22, 11.5f, 23, 12f, 24, 12.5f, 25, 13f, 26, 13.5f, 27, 14f, 28, 14.5f, 29, 15f, 30, 16f, 32, 15.5f, 31 };
  System.arraycopy(src, 0, activations.get(c.getInputLayer()).getElements(), activations.get(c.getInputLayer()).getStartIndex(), src.length);

  ConnectionCalculator calc = new AparapiMaxPooling2D();
  calc.calculate(connections, activations, c.getOutputLayer());

  ValuesProvider vp = TensorFactory.tensorProvider(c, 2, true);
  TensorFactory.copy(activations.get(c.getOutputLayer()), vp.get(c.getOutputLayer()));

  BackpropagationMaxPooling2D bp = new BackpropagationMaxPooling2D();
View Full Code Here

    }

    public static void lcMaxPooling(NeuralNetworkImpl nn) {
  if (nn.getLayerCalculator() instanceof LayerCalculatorImpl) {
      LayerCalculatorImpl lc = (LayerCalculatorImpl) nn.getLayerCalculator();
      nn.getLayers().stream().filter(l -> Util.isSubsampling(l)).forEach(l -> lc.addConnectionCalculator(l, new AparapiMaxPooling2D()));
  } else {
      throw new IllegalArgumentException("LayerCalculator type not supported");
  }
    }
View Full Code Here

TOP

Related Classes of com.github.neuralnetworks.calculation.neuronfunctions.AparapiMaxPooling2D

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.