Package com.datasalt.pangool.tuplemr.mapred.lib.input

Examples of com.datasalt.pangool.tuplemr.mapred.lib.input.HadoopInputFormat


    mr.addIntermediateSchema(getURLRegisterSchema());
    mr.setGroupByFields("url");
    mr.setOrderBy(new OrderBy().add("url", Order.ASC).addSchemaOrder(Order.ASC));
    mr.setTupleReducer(new Handler());
    mr.setOutput(new Path(output), new HadoopOutputFormat(TextOutputFormat.class), Text.class, NullWritable.class);
    mr.addInput(new Path(input1), new HadoopInputFormat(TextInputFormat.class), new UrlMapProcessor());
    mr.addInput(new Path(input2), new HadoopInputFormat(TextInputFormat.class), new UrlProcessor());
    mr.createJob().waitForCompletion(true);

    return 1;
  }
View Full Code Here


   
    init(conf, new Path(modelFolder));
   
    MapOnlyJobBuilder job = new MapOnlyJobBuilder(conf);
    job.setOutput(new Path(output), new HadoopOutputFormat(TextOutputFormat.class), Text.class, NullWritable.class);
    job.addInput(new Path(input), new HadoopInputFormat(TextInputFormat.class), new MapOnlyMapper<LongWritable, Text, Text, NullWritable>() {
      protected void map(LongWritable key, Text value, Context context) throws IOException ,InterruptedException {
        value.set(value.toString() + "\t" + classify(value.toString()));
        context.write(value, NullWritable.get());
      }
    });
View Full Code Here

    mr.addIntermediateSchema(getSchema());
    mr.setGroupByFields("my_avro");
    //here the custom comparator that groups by "topic,word" is used.
    MyAvroComparator customComp = new MyAvroComparator(getAvroSchema(),"topic","word");
    mr.setOrderBy(new OrderBy().add("my_avro",Order.ASC,customComp));
    mr.addInput(new Path(args[0]), new HadoopInputFormat(TextInputFormat.class), new TokenizeMapper());
    // We'll use a TupleOutputFormat with the same schema than the intermediate schema
    mr.setTupleOutput(new Path(args[1]), getSchema());
    mr.setTupleReducer(new CountReducer());
    mr.setTupleCombiner(new CountReducer());
View Full Code Here

    mr.addIntermediateSchema(getPangoolRetweetSchema());
    mr.setGroupByFields("tweet_id");
    mr.setOrderBy(new OrderBy().add("tweet_id",Order.ASC).addSchemaOrder(Order.ASC));
   
    mr.addInput(tweetsPath,new AvroInputFormat<Record>(getAvroTweetSchema()),new TweetsMapper());
    mr.addInput(retweetsPath, new HadoopInputFormat(TextInputFormat.class), new RetweetsMapper());
    mr.setOutput(outputPath,new AvroOutputFormat<Record>(getAvroOutputSchema()),
        AvroWrapper.class,NullWritable.class);

    mr.setTupleReducer(new Red());
View Full Code Here

    mr.addIntermediateSchema(getPangoolRetweetSchema());
    mr.setGroupByFields("tweet_id");
    mr.setOrderBy(new OrderBy().add("tweet_id", Order.ASC).addSchemaOrder(Order.ASC));

    mr.addInput(tweetsPath, new AvroInputFormat<Record>(getAvroTweetSchema()), new TweetsMapper());
    mr.addInput(retweetsPath, new HadoopInputFormat(TextInputFormat.class), new RetweetsMapper());
    mr.setOutput(outputPath, new AvroOutputFormat<Record>(getAvroOutputSchema()), AvroWrapper.class,
        NullWritable.class);

    mr.setTupleReducer(new Red());
View Full Code Here

    mr.addIntermediateSchema(getSchema());
    mr.setGroupByFields("my_avro");
    // here the custom comparator that groups by "topic,word" is used.
    MyAvroComparator customComp = new MyAvroComparator(getAvroSchema(), "topic", "word");
    mr.setOrderBy(new OrderBy().add("my_avro", Order.ASC, customComp));
    mr.addInput(new Path(args[0]), new HadoopInputFormat(TextInputFormat.class), new TokenizeMapper());
    // We'll use a TupleOutputFormat with the same schema than the intermediate schema
    mr.setTupleOutput(new Path(args[1]), getSchema());
    mr.setTupleReducer(new CountReducer());
    mr.setTupleCombiner(new CountReducer());
View Full Code Here

    mr.setGroupByFields("url");
    mr.setOrderBy(new OrderBy().add("url", Order.ASC).addSchemaOrder(Order.ASC));
    mr.setTupleReducer(new Handler());
    mr.setOutput(new Path(output), new HadoopOutputFormat(TextOutputFormat.class), Text.class,
        NullWritable.class);
    mr.addInput(new Path(input1), new HadoopInputFormat(TextInputFormat.class), new UrlMapProcessor());
    mr.addInput(new Path(input2), new HadoopInputFormat(TextInputFormat.class), new UrlProcessor());

    try {
      mr.createJob().waitForCompletion(true);
    } finally {
      mr.cleanUpInstanceFiles();
View Full Code Here

   
    delete(output);
   
    MapOnlyJobBuilder b = new MapOnlyJobBuilder(conf);
    b.setOutput(new Path(output), new HadoopOutputFormat(TextOutputFormat.class), Text.class, NullWritable.class);
    b.addInput(new Path(input), new HadoopInputFormat(TextInputFormat.class), new GrepHandler(regex));
    b.createJob().waitForCompletion(true);
   
    return 0;
  }
View Full Code Here

    for(Category category : Category.values()) { // For each Category
      String categoryString = category.toString().toLowerCase();
      // Add the category, book title input spec with the associated CategoryMapper
      for(FileStatus fileStatus : fileSystem.listStatus(new Path(input + "/" + categoryString))) {
        job.addInput(fileStatus.getPath(), new HadoopInputFormat(TextInputFormat.class),
            new CategoryMapper(category, fileStatus.getPath().getName()));
      }
      // Add a named output for each category
      job.addNamedOutput(categoryString, new TupleSolrOutputFormat(new File(
          "src/test/resources/shakespeare-solr"), conf), ITuple.class, NullWritable.class);
View Full Code Here

   
    init(conf, new Path(modelFolder));
   
    MapOnlyJobBuilder job = new MapOnlyJobBuilder(conf);
    job.setOutput(new Path(output), new HadoopOutputFormat(TextOutputFormat.class), Text.class, NullWritable.class);
    job.addInput(new Path(input), new HadoopInputFormat(TextInputFormat.class), new MapOnlyMapper<LongWritable, Text, Text, NullWritable>() {
      protected void map(LongWritable key, Text value, Context context) throws IOException ,InterruptedException {
        value.set(value.toString() + "\t" + classify(value.toString()));
        context.write(value, NullWritable.get());
      }
    });
View Full Code Here

TOP

Related Classes of com.datasalt.pangool.tuplemr.mapred.lib.input.HadoopInputFormat

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.