Package cc.redberry.core.tensor

Examples of cc.redberry.core.tensor.Expression$ExpressionIterator


        //all symbols will have names scalar1,scalar2, etc.

        //processing equations
        int i;
        for (i = 0; i < equations.length; ++i) {
            Expression eq = equations[i];
            //iterating over the whole equation
            FromChildToParentIterator iterator = new FromChildToParentIterator(eq);
            Tensor t;
            while ((t = iterator.next()) != null) {
                if (!(t instanceof Product) || t.getIndices().size() == 0)
View Full Code Here


     */
    public static void testVectorField() {
        CC.setDefaultOutputFormat(OutputFormat.RedberryConsole);
        Tensors.addSymmetry("P_lm", IndexType.LatinLower, false, 1, 0);

        Expression iK = Tensors.parseExpression("iK_a^b=d_a^b+c*n_a*n^b");
        Expression K = Tensors.parseExpression("K^{lm}_a^{b}=g^{lm}*d_{a}^{b}-k/2*(g^{lb}*d_a^m+g^{mb}*d_a^l)");
        Expression S = Tensors.parseExpression("S^p^l_m=0");
        Expression W = Tensors.parseExpression("W^{a}_{b}=P^{a}_{b}+(k/2)*R^a_b");
        Expression F = Tensors.parseExpression("F_lmab=R_lmab");


        Expression lambda = Tensors.parseExpression("k=gamma/(1+gamma)");
        Expression gamma = Tensors.parseExpression("c=gamma");
        iK = (Expression) gamma.transform(lambda.transform(iK));
        K = (Expression) gamma.transform(lambda.transform(K));
        S = (Expression) gamma.transform(lambda.transform(S));
        W = (Expression) gamma.transform(lambda.transform(W));

        OneLoopInput input = new OneLoopInput(2, iK, K, S, W, null, null, F);

        OneLoopCounterterms action = OneLoopCounterterms.calculateOneLoopCounterterms(input);
    }
View Full Code Here

     */
    public static void testSquaredVectorField() {
        CC.setDefaultOutputFormat(OutputFormat.RedberryConsole);
        Tensors.addSymmetry("P_lm", IndexType.LatinLower, false, 1, 0);

        Expression iK = Tensors.parseExpression("iK_a^b=d_a^b+(2*c+Power[c,2])*n_a*n^b");
        Expression K = Tensors.parseExpression("K^{lmcd}_a^{b}="
                + "d_a^b*1/3*(g^{lm}*g^{cd}+ g^{lc}*g^{md}+ g^{ld}*g^{mc})"
                + "+1/12*(-2*k+Power[k,2])*("
                + "g^{lm}*d_a^c*g^{bd}"
                + "+g^{lm}*d_a^d*g^{bc}"
                + "+g^{lc}*d_a^m*g^{bd}"
                + "+g^{lc}*d_a^d*g^{bm}"
                + "+g^{ld}*d_a^m*g^{bc}"
                + "+g^{ld}*d_a^c*g^{bm}"
                + "+g^{mc}*d_a^l*g^{bd}"
                + "+g^{mc}*d_a^d*g^{bl}"
                + "+g^{md}*d_a^l*g^{bc}"
                + "+g^{md}*d_a^c*g^{bl}"
                + "+g^{cd}*d_a^l*g^{bm}"
                + "+g^{cd}*d_a^m*g^{bl})");
        Expression S = Tensors.parseExpression("S^lmpab=0");
        //W^{l m }_{a }^{b } = d^{m }_{a }*R^{b l }+d^{l }_{a }*R^{b m }+g^{l b }*R_{a }^{m }+2*P_{a }^{b }*g^{l m }+-2/3*d_{a }^{b }*R^{l m }
        Expression W = Tensors.parseExpression("W^{lm}_a^b="
                + "2*P_{a}^{b}*g^{lm}-2/3*R^lm*d_a^b"
                + "-k/2*P_a^l*g^mb"
                + "-k/2*P_a^m*g^lb"
                + "-k/2*P^bl*d^m_a"
                + "-k/2*P^bm*d^l_a"
                + "+1/6*(k-2*Power[k,2])*("
                + "R_a^l*g^mb"
                + "+R_a^m*g^lb"
                + "+R^bl*d^m_a"
                + "+R^bm*d^l_a)"
                + "+1/6*(2*k-Power[k,2])*"
                + "(R_a^lbm+R_a^mbl)"
                + "+1/2*(2*k-Power[k,2])*g^lm*R_a^b");
        Expression N = Tensors.parseExpression("N^pab=0");
        Expression M = Tensors.parseExpression("M_a^b = "
                + "P_al*P^lb-1/2*R_lmca*R^lmcb"
                + "+k/2*P_al*R^lb"
                + "+k/2*P_lm*R^l_a^mb"
                + "+1/6*(k-2*Power[k,2])*R_al*R^lb"
                + "+1/12*(4*k+7*Power[k,2])*R_lam^b*R^lm"
                + "+1/4*(2*k-Power[k,2])*R_almc*R^clmb");
        Expression F = Tensors.parseExpression("F_lmab=R_lmab");


        Expression lambda = Tensors.parseExpression("k=gamma/(1+gamma)");
        Expression gamma = Tensors.parseExpression("c=gamma");
        iK = (Expression) gamma.transform(lambda.transform(iK));
        K = (Expression) gamma.transform(lambda.transform(K));
        S = (Expression) gamma.transform(lambda.transform(S));
        W = (Expression) gamma.transform(lambda.transform(W));
        M = (Expression) gamma.transform(lambda.transform(M));

        OneLoopInput input = new OneLoopInput(4, iK, K, S, W, N, M, F);
        OneLoopCounterterms action = OneLoopCounterterms.calculateOneLoopCounterterms(input);
    }
View Full Code Here

     */
    public static void testGravityGhosts() {
        CC.setDefaultOutputFormat(OutputFormat.RedberryConsole);
        Tensors.addSymmetry("P_lm", IndexType.LatinLower, false, 1, 0);

        Expression iK = Tensors.parseExpression("iK_a^b=d_a^b+gamma*n_a*n^b");
        Expression K = Tensors.parseExpression("K^{lm}_a^{b}=d_a^b*g^lm-1/2*beta*(d_a^l*g^mb+d_a^m*g^lb)");
        Expression S = Tensors.parseExpression("S^p^l_m=0");
        Expression W = Tensors.parseExpression("W^{a}_{b}=(1+beta/2)*R^a_b");
        Expression F = Tensors.parseExpression("F_lmab=R_lmab");


        Expression beta = Tensors.parseExpression("beta=gamma/(1+gamma)");
        iK = (Expression) beta.transform(iK);
        K = (Expression) beta.transform(K);
        S = (Expression) beta.transform(S);
        W = (Expression) beta.transform(W);

        OneLoopInput input = new OneLoopInput(2, iK, K, S, W, null, null, F);

        OneLoopCounterterms action = OneLoopCounterterms.calculateOneLoopCounterterms(input);
    }
View Full Code Here

        CC.setDefaultOutputFormat(OutputFormat.RedberryConsole);
        Tensors.addSymmetry("R_lm", 1, 0);
        Tensors.addAntiSymmetry("R_lmab", 1, 0, 2, 3);
        Tensors.addSymmetry("R_lmab", 2, 3, 0, 1);

        Expression iK = Tensors.parseExpression("iK_ab^cd = "
                + "(d_a^c*d_b^d+d_b^c*d_a^d)/2+"
                + "la/2*("
                + "d_a^c*n_b*n^d"
                + "+d_a^d*n_b*n^c"
                + "+d_b^c*n_a*n^d"
                + "+d_b^d*n_a*n^c)"
                + "-la*g^cd*n_a*n_b");
        Expression K = Tensors.parseExpression("K^lm_ab^cd = "
                + "g^lm*(d_a^c*d_b^d+d_b^c*d_a^d)/2"
                + "-la/(4*(1+la))*("
                + "d_a^c*d_b^l*g^dm"
                + "+d_a^c*d_b^m*g^dl"
                + "+d_a^d*d_b^l*g^cm"
                + "+d_a^d*d_b^m*g^cl"
                + "+d_b^c*d_a^l*g^dm"
                + "+d_b^c*d_a^m*g^dl"
                + "+d_b^d*d_a^l*g^cm"
                + "+d_b^d*d_a^m*g^cl)"
                + "+la/(2*(1+la))*g^cd*(d_a^l*d_b^m+d_a^m*d_b^l)");
        Expression S = Tensors.parseExpression("S^p_{ab}^{cd}=0");
        Expression W = Tensors.parseExpression("W_{ab}^{cd}=P_ab^cd"
                + "-la/(2*(1+la))*(R_a^c_b^d+R_a^d_b^c)"
                + "+la/(4*(1+la))*("
                + "d_a^c*R_b^d"
                + "+d_a^d*R_b^c"
                + "+d_b^c*R_a^d"
                + "+d_b^d*R_a^c)");
        Expression P = Tensors.parseExpression("P_cd^lm = "
                + "R_c^l_d^m+R_c^m_d^l"
                + "+1/2*("
                + "d_c^l*R_d^m"
                + "+d_c^m*R_d^l"
                + "+d_d^l*R_c^m"
                + "+d_d^m*R_c^l)"
                + "-g^lm*R_cd"
                + "-R^lm*g_cd"
                + "+(-d_c^l*d_d^m-d_c^m*d_d^l+g^lm*g_cd)*R/2");
        W = (Expression) P.transform(W);
        Expression F = Tensors.parseExpression("F_lm^kd_pr = "
                + "R^k_plm*d^d_r+R^d_rlm*d^k_p");

        OneLoopInput input = new OneLoopInput(2, iK, K, S, W, null, null, F);

        OneLoopCounterterms action = OneLoopCounterterms.calculateOneLoopCounterterms(input);
View Full Code Here

     */
    public static void testMinimalSecondOrderOperator() {
        //TIME = 6.1 s
        CC.setDefaultOutputFormat(OutputFormat.RedberryConsole);

        Expression iK = Tensors.parseExpression("iK_a^b=d_a^b");
        Expression K = Tensors.parseExpression("K^lm_a^b=d_a^b*g^{lm}");
        Expression S = Tensors.parseExpression("S^lab=0");
        Expression W = Tensors.parseExpression("W_a^b=W_a^b");
        Expression F = Tensors.parseExpression("F_lmab=F_lmab");

        OneLoopInput input = new OneLoopInput(2, iK, K, S, W, null, null, F);

        OneLoopCounterterms action = OneLoopCounterterms.calculateOneLoopCounterterms(input);
    }
View Full Code Here

    public static void testMinimalSecondOrderOperatorBarvinskyVilkovisky() {
        //TIME = 4.5 s
        CC.setDefaultOutputFormat(OutputFormat.RedberryConsole);

        //Phys. Rep. 119 ( 1985) 1-74
        Expression iK = Tensors.parseExpression("iK_a^b=d_a^b");
        Expression K = Tensors.parseExpression("K^lm_a^b=d_a^b*g^{lm}");
        Expression S = Tensors.parseExpression("S^lab=0");
        //here P^... from BV equal to W^...
        Expression W = Tensors.parseExpression("W_a^b=W_a^b-1/6*R*d_a^b");
        Expression F = Tensors.parseExpression("F_lmab=F_lmab");

        OneLoopInput input = new OneLoopInput(2, iK, K, S, W, null, null, F);

        OneLoopCounterterms action = OneLoopCounterterms.calculateOneLoopCounterterms(input);
    }
View Full Code Here

    public static void testMinimalFourthOrderOperator() {
        //TIME = 6.2 s
        CC.setDefaultOutputFormat(OutputFormat.RedberryConsole);
        Tensors.addSymmetry("P_lm", IndexType.LatinLower, false, 1, 0);

        Expression iK = Tensors.parseExpression("iK_a^b=d_a^b");
        Expression K = Tensors.parseExpression("K^{lmcd}_a^{b}="
                + "d_a^b*1/3*(g^{lm}*g^{cd}+ g^{lc}*g^{md}+ g^{ld}*g^{mc})");
        Expression S = Tensors.parseExpression("S^lmpab=0");
        Expression W = Tensors.parseExpression("W^{lm}_a^b=0*W^{lm}_a^b");
        Expression N = Tensors.parseExpression("N^pab=0*N^pab");
        Expression M = Tensors.parseExpression("M_a^b = 0*M_a^b");
        Expression F = Tensors.parseExpression("F_lmab=F_lmab");

        OneLoopInput input = new OneLoopInput(4, iK, K, S, W, N, M, F);
        OneLoopCounterterms action = OneLoopCounterterms.calculateOneLoopCounterterms(input);
    }
View Full Code Here

     * of the theory with spin = 3.
     */
    public static void testSpin3Ghosts() {
        //TIME = 990 s
        CC.setDefaultOutputFormat(OutputFormat.RedberryConsole);
        Expression iK = Tensors.parseExpression(
                "iK^{ab}_{lm} = P^{ab}_{lm}-1/4*c*g_{lm}*g^{ab}+"
                        + "(1/4)*b*(n_{l}*n^{a}*d^{b}_{m}+n_{l}*n^{b}*d^{a}_{m}+n_{m}*n^{a}*d^{b}_{l}+n_{m}*n^{b}*d^{a}_{l})+"
                        + "c*(n_{l}*n_{m}*g^{ab}+n^{a}*n^{b}*g_{lm})"
                        + "-c*b*n_{l}*n_{m}*n^{a}*n^{b}");
        Expression K = Tensors.parseExpression(
                "K^{lm}^{ab}_{cd} = g^{lm}*P^{ab}_{cd}+"
                        + "(1+2*beta)*((1/4)*(d^{l}_{c}*g^{a m}*d^{b}_{d} + d^{l}_{d}*g^{a m}*d^{b}_{c}+d^{l}_{c}*g^{b m}*d^{a}_{d}+ d^{l}_{d}*g^{b m}*d^{a}_{c})+"
                        + "(1/4)*(d^{m}_{c}*g^{a l}*d^{b}_{d} + d^{m}_{d}*g^{a l}*d^{b}_{c}+d^{m}_{c}*g^{b l}*d^{a}_{d}+ d^{m}_{d}*g^{b l}*d^{a}_{c}) -"
                        + "(1/4)*(g_{cd}*g^{l a}*g^{m b}+g_{cd}*g^{l b}*g^{m a})-"
                        + "(1/4)*(g^{ab}*d^{l}_{c}*d^{m}_{d}+g^{ab}*d^{l}_{d}*d^{m}_{c})+(1/8)*g^{lm}*g_{cd}*g^{ab})");
        Expression P = Tensors.parseExpression(
                "P^{ab}_{lm} = (1/2)*(d^{a}_{l}*d^{b}_{m}+d^{a}_{m}*d^{b}_{l})-(1/4)*g_{lm}*g^{ab}");
        iK = (Expression) P.transform(iK);
        K = (Expression) P.transform(K);

        Expression consts[] = {
                Tensors.parseExpression("c=(1+2*beta)/(5+6*beta)"),
                Tensors.parseExpression("b=-(1+2*beta)/(1+beta)")
        };
        for (Expression cons : consts) {
            iK = (Expression) cons.transform(iK);
            K = (Expression) cons.transform(K);
        }

        Expression S = (Expression) Tensors.parse("S^p^{ab}_{lm}=0");
        Expression W = (Expression) Tensors.parse("W^{ab}_{lm}=0");
        Expression F = Tensors.parseExpression("F_lmabcd=0");

        Transformation[] ds = OneLoopUtils.antiDeSitterBackground();
        Transformation[] tr = new Transformation[ds.length + 1];
        System.arraycopy(ds, 0, tr, 0, ds.length);
        tr[tr.length - 1] = FactorTransformation.FACTOR;
View Full Code Here

        Tensors.addSymmetry("R_lm", IndexType.LatinLower, false, new int[]{1, 0});
        Tensors.addSymmetry("R_lmab", IndexType.LatinLower, true, new int[]{0, 1, 3, 2});
        Tensors.addSymmetry("R_lmab", IndexType.LatinLower, false, new int[]{2, 3, 0, 1});


        Expression iK = Tensors.parseExpression("iK_ab^cd = "
                + "(d_a^c*d_b^d+d_b^c*d_a^d)/2-"
                + "la/2*("
                + "d_a^c*n_b*n^d"
                + "+d_a^d*n_b*n^c"
                + "+d_b^c*n_a*n^d"
                + "+d_b^d*n_a*n^c)"
                + "-ga*(g_ab*n^c*n^d+g^cd*n_a*n_b)"
                + "-1/2*g_ab*g^cd"
                + "+2*ga*(ga*la-2*ga+2*la)*n_a*n_b*n^c*n^d");
        Expression K = Tensors.parseExpression("K^lm_ab^cd = "
                + "g^lm*(d_a^c*d_b^d+d_b^c*d_a^d)/2"
                + "-la/(4*(1+la))*("
                + "d_a^c*d_b^l*g^dm"
                + "+d_a^c*d_b^m*g^dl"
                + "+d_a^d*d_b^l*g^cm"
                + "+d_a^d*d_b^m*g^cl"
                + "+d_b^c*d_a^l*g^dm"
                + "+d_b^c*d_a^m*g^dl"
                + "+d_b^d*d_a^l*g^cm"
                + "+d_b^d*d_a^m*g^cl)"
                + "+(la-be)/(2*(1+la))*(g^cd*(d_a^l*d_b^m+d_a^m*d_b^l)+g_ab*(g^cl*g^dm+g^cm*g^dl))"
                + "+g^lm*g_ab*g^cd*(-1+(1+be)**2/(2*(1+la)))");
        K = (Expression) Tensors.parseExpression("be = ga/(1+ga)").transform(K);
        Expression S = Tensors.parseExpression("S^p_{ab}^{cd}=0");
        Expression W = Tensors.parseExpression("W_{ab}^{cd}=P_ab^cd"
                + "-la/(2*(1+la))*(R_a^c_b^d+R_a^d_b^c)"
                + "+la/(4*(1+la))*("
                + "d_a^c*R_b^d"
                + "+d_a^d*R_b^c"
                + "+d_b^c*R_a^d"
                + "+d_b^d*R_a^c)");
        Expression P = Tensors.parseExpression("P_ab^lm ="
                + "1/4*(d_a^c*d_b^d+d_a^d*d_b^c-g_ab*g^cd)"
                + "*(R_c^l_d^m+R_c^m_d^l-g^lm*R_cd-g_cd*R^lm"
                + "+1/2*(d^l_c*R^m_d+d^m_c*R_d^l+d^l_d*R^m_c+d^m_d*R^l_c)"
                + "-1/2*(d^l_c*d^m_d+d^m_c*d^l_d)*(R-2*LA)+1/2*g_cd*g^lm*R)");
        P = (Expression) ExpandTransformation.expand(P,
                EliminateMetricsTransformation.ELIMINATE_METRICS,
                Tensors.parseExpression("R_{l m}^{l}_{a} = R_{ma}"),
                Tensors.parseExpression("R_{lm}^{a}_{a}=0"),
                Tensors.parseExpression("R_{l}^{l}= R"));
        W = (Expression) P.transform(W);
        Expression F = Tensors.parseExpression("F_lm^kd_pr = "
                + "R^k_plm*d^d_r+R^d_rlm*d^k_p");

        OneLoopInput input = new OneLoopInput(2, iK, K, S, W, null, null, F);

        OneLoopCounterterms action = OneLoopCounterterms.calculateOneLoopCounterterms(input);
View Full Code Here

TOP

Related Classes of cc.redberry.core.tensor.Expression$ExpressionIterator

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.