} else {
trainingInstances.add(instances[j]);
}
}
svm_model trainModel = train(trainingInstances, param);
double[] predictions = SVMPredictor.predict(testingInstances, trainModel);
for (int k = 0; k < predictions.length; k++) {
if (predictions[k] == testingInstances.get(k).getLabel()) {
//if (Math.abs(predictions[k] - testingInstances.get(k).getLabel()) < 0.00001) {